
Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Low-Level Control-Flow Manipulation Techniques

Horia V. Corcalciuc
Department of Computational Physics and Information

Technologies
Horia Hulubei National Institute for R&D in Physics and

Nuclear Engineering (IFIN-HH)

October 15, 2018

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Motivation

1. Is the reasoning behind attacks carried out on system-level
software applicable to defeating software copy protections?

2. Are attacks on software copy protections formalized?

3. Do copy protection solutions ultimately work?

4. Is privacy abused under the guise of protecting copyright
holders?

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Closed Source vs Open Source

Closed source does not provide any added security - closed source
may make circumventing protections less accessible to a wider
audience.

Open Source software just makes developing an attack more
convenient. Many system-level Open Source software such as
MTAs, graphics libraries have been attacked successfully
(“sendmail”, “libpng“, etc...).

Closed source software has either been reverse-engineered in
the case of software protections or probed till an attack vector
has been found (“IIS”, “Outlook”, etc...).

All software mentioned for this research had a commercial
license and the source code was not provided.

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Systems vs Software Security

Typical Attack Patterns

Two major categories that seem to be relevant to defeating
software protections:

Code Injections - Buffer Overflows, SQL injections

Race Conditions - Timing attacks, Time of Check to Time
of Use (TOCTTOU)

Examples include:

“Rooting” or “Jailbreaking” operating systems - Apple iOS
code injection via (Code Injections)

Combined hardware attacks - George Hotz’ Playstation 3
“glitching attack” (Race Conditions) voltage pulse delivered
at the appropriate time, allowing read-write access to memory
(Code Injections).

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Minimal Attack Patterns

5. Can control-flow manipulation alone yield large returns
when defeating copy protections?

Let the minimal set of attack patterns pertaining to control flow
be:

1 Manipulate jump instructions, ie replace a conditional jump (jne,
je, etc..) by an unconditional jump or invert a conditional, for
instance “jump if not equals” (jne) replaced by a “jump if equals”
(je).

2 Eliminate a jump altogether, for instance by replacing a jump
instruction by a no-operation nop. (can be derived from 1st
pattern)

3 Remove a function entirely. (can be derived from 1st pattern)

4 nop sledge from one instruction to a region by padding with nop

instructions thereby “carrying a predicate”. (can be derived from
1st pattern)

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Coercing Control Flow

Manipulate Jump Instructions

read

compare jump

continue

i n t r e g = i s R e g i s t e r e d () ; // r e a d
i f (r e g != 1) { // compare

r e t u r n ; // jump
}
s t a r t () ; // c o n t i n u e

xor c l , c l ; r e a d
cmp rax , r b x ; compare
j l e 0 x10001FF07 ; jump
mov c l , 0 x1 ; c o n t i n u e

xor c l , c l ; r e a d
cmp rax , r b x ; compare
nop
nop
mov c l , 0 x1 ; c o n t i n u e

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Coercing Control Flow

Function Elimination

enter

execute

return

n e e d s L i c e n s e R e m i n d e r () { // e n t e r
. . . // e x e c u t e
r e t u r n ; // r e t u r n

}

n e e d s L i c e n s e R e m i n d e r : ; e n t e r
push rbp
mov rbp , r s p
push r15
push r14
push r b x
jmp 0 x2129 ; jump

. . .
0 x2129 pop r b x

pop r14
pop r15
pop rbp
r e t

; r e t u r n

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Coercing Control Flow

nop Sledges

i n t i = i s R e g i s t e r e d () ;
i f (i == 1) {

r e g i s t e r e d = TRUE; // I t ’ s r e g i s t e r e d !
p r i n t f (”You a r e now r e g i s t e r e d ! ”) ;
r e t u r n ;

}

p r i n t f (” W i l l e x p i r e i n 30 days ! ”) ;
s e t T i m e r () ;

r e t u r n ;

mov rbx , 0 x1 ; r e g i s t e r e d = 1
nop ; s l e d g e to end o f method
nop
nop
. . .
. . .
. . .
. . .
. . .
nop
r e t

The effect of building a nop sledge is that a predicate is “carried” to a different
region of code. In the aforementioned example, an environment-bound variable
registered is set thereby letting other regions of code that rely on the
variable work under the assumption that the software is registered.

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Coercing Control Flow

Pattern Equivalence

0 x0001 nop
0 x0002 mov rdx , r14

0 x0001 jmp 0 x0002
0 x0002 mov rdx , r14

All patterns can be derived from manipulating jump instructions:

A single nop instruction can be semantically equivalent to a jump jmp

one instruction ahead.

A nop sledge can be replaced by a jmp instruction to the target region of
code.

A method can be eliminated by either replacing instructions with nop

(slide) or just jump via jmp to the end of the method.

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Coercing Control Flow

Formalizing using Aczel Traces

nop Sledge (Sequential: PocketRSS)

P0

P1

t1 (mov)

P1

P2

t2

P1

t3

P4

t4 (ret)

P1

t ′1(nop)

P1

t ′2(nop)

Jump Coercion (Parallel: ShareMouse Timer)

P0

P1

t1 (push)

P1

P2

t2

P1

t3

P4

t4 (pop)

P1

ti (jmp)

P ′0

P ′1

t ′1

P ′1

P ′2

t ′2

P ′3

t ′3

P ′4

t ′4

Given a series of composed and terminating traces traces t = t1 · t2 · ... · t4 ·X, an execution of the
program that respects stability such as P1 . P2, P2 . P3, ... as part of the rely set of conditions can
guarantee proper termination and is also a legitimate run of the program.

It is sufficient for an attacker that injects traces ti to guarantee termination by making sure that the
program state is not invalidated when coercing control flow. In other words, the “carried predicate” (ie:
P1) over predicate P2 must at least be a subset of the replaced predicate (ie: P3) such that P1 ⊆ P3.
(Proof by induction over traces, s |= P1, s ′ |= P3)

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Coercing Control Flow

Results

Software with Defeated Copy Protections

“Acorn”, “Alfred”, “Amnesty”, “BBEdit”, “CleanGenius”, “CornerStone”,
“DaisyDisk”, “Decloner”, “DropDMG”, “Entropy”, “FontAgent Pro”, “Grappler”,
“iGlasses”, “IconBox”, “iPulse”, “iRamDisk”, “Latexian”, “Leech”, “Omnigraph
Sketcher”, “Omni Plan”, “On The Job”, “PathFinder”, “Perfect Photo Suite”,
“PhotoSweeper”, “ProxyCap”, “QPict”, “SecuritySpy”, “Smasher”, “SnapzProX”,
“Snippets”, “SubethaEdit”, “TextMate”, “Transmit”, “VelaClock”, “WireTap
Studio”, “XScope”, “Zoom2”, etc...

All of the above commercial software packages have been defeated with the
following mentions:

Only the four described techniques were used to attack the software.

A lot of the studied software (for instance, “Keyboard Maestro”) required
a single instruction to be changed.

Canaries, stack guards and other protections (“Paddle” framework) were
sometimes irrelevant since other regions of code could be coerced without
tripping over them.

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Security vs. Privacy

Studying software packages in order to defeat copyright protections
led to the following observations.

Many software packages are laced with in-line calls to the
creators’ websites where identifiable information could be
stored - the information sent ranges from data such as
workstation user-name and up to hardware identifiers such as
MAC addresses.

Cracker groups that defeat copy protections tend to not
disable the dial home device such that it becomes trivial for
a creator to determine whether some person is using an
illegitimate copy (ie: a demo application that still dials home
even after the trial period has long expired).

It is uncertain on what legal basis the identifying information is
collected and whether creators are compliant with new privacy laws
(such as the European GDPR).

Introduction Systems vs Software Security Defeating Software Protections Privacy Questions

Any Questions?

?

	Introduction
	Systems vs Software Security
	Systems vs Software Security

	Defeating Software Protections
	Coercing Control Flow
	Coercing Control Flow
	Coercing Control Flow
	Coercing Control Flow
	Coercing Control Flow
	Coercing Control Flow

	Privacy
	Questions

